

Chapter 4 - Part B Motion in Two and Three Dimensions

4-4 Projectile Motion
4-5 Uniform Circular Motion

4-4 Projectile Motion Projectile motion

4-4 Projectile Motion
 Projectile motion

A projectile is an object that is thrown or launched in air and moves only under the influence of Earth's gravity.

We will ignore air effects.

$$
\underbrace{}_{a_{y}=-g} a_{x}=0
$$

The projectile has no acceleration in the horizontal direction.

The projectile's acceleration is the free-fall acceleration

4-4 Projectile Motion Equations of motion

4-4 Projectile Motion

The equation of the path

$$
\begin{aligned}
& y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2} \xrightarrow{y-y_{0}=0} 0=v_{0 y} t-\frac{1}{2} g^{2} \rightarrow \frac{2 v_{0 y}}{g}=t \\
& x-x_{0}=v_{0 x} t \rightarrow R=v_{0 x} t \longrightarrow R=v_{0 x} \frac{2 v_{0 y}}{g} \\
& R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \longleftarrow \quad R=\frac{2 v_{0}^{2}}{g} \sin \theta_{0} \cos \theta_{0}: \begin{array}{l}
v_{0 y}=v_{0} \sin \theta_{0} \\
v_{0 x}=v_{0} \cos \theta_{0}
\end{array}
\end{aligned}
$$

4-4 Projectile Motion The horizontal range

To use the formula for the horizontal range, the final height should be the same as the launch height.

$$
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}
$$

The horizontal range is maximum for a launch angle of 45°

The horizontal range is maximum when $\sin 2 \theta_{0}=1$

$$
\rightarrow 2 \theta_{0}=90^{\circ} \text { or } \theta_{0}=45^{\circ} .
$$

4-4 Projectile Motion Checkpoint

4-4 Projectile Motion Example

A plane drops a package of emergency to explorers at the top of a hill. The plane is traveling horizontally at $40.0 \mathrm{~m} / \mathrm{s}$ at a height of 100 m above the ground. Where does the package strike the ground relative to the point at which it was released?

Solution

velocity: $\mathrm{v}=40.0 \mathrm{~m} / \mathrm{s} \quad$ Distance $\mathrm{d}=$?
height: $\quad \mathrm{h}=100 \mathrm{~m}$

1. Introduce coordinate frame:

Oy : y is directed up
2. Note: $\mathrm{v}_{\mathrm{ox}}=\mathrm{v}=+40 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{\mathrm{oy}}=0 \mathrm{~m} / \mathrm{s}$

$y^{0}-y_{0}=v_{p_{y}} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \rightarrow-\mathrm{h}=-\frac{1}{2} \mathrm{gt}^{2} \rightarrow \mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$

$$
t=\sqrt{\frac{2(-100 m)}{-9.8 m / s^{2}}}=4.51 \mathrm{~s} \quad \underline{O x}: x=v_{x 0} t, \text { so } \quad x=(40 \mathrm{~m} / \mathrm{s})(4.51 \mathrm{~s})=\underline{180 \mathrm{~m}}
$$

4-4 Projectile Motion
 Example

Ground

$$
\begin{aligned}
& \text { Solution Choose the origin at the release point } \rightarrow x_{0}=y_{0}=0 \\
& \text { Since the object is released, its initial velocity = airplane's velocity; } \\
& \mathrm{v}_{0 \mathrm{x}}=\mathrm{v}_{0}=80 \mathrm{~m} / \mathrm{s} \\
& v_{0 y}=0 \\
& \phi=\tan ^{-1} \frac{r}{h} \begin{array}{ll}
x-x_{0}=v_{0 x} t & \\
y-y_{0}=v_{0 y} t-\frac{1}{2} g t^{2} & h=-\frac{1}{2} g t^{2} \\
& t=\sqrt{\frac{2 h}{g}} \rightarrow r=v_{0} \sqrt{\frac{2 h}{g}}
\end{array} \\
& \phi=\tan ^{-1} \frac{v_{0} \sqrt{2 h / g}}{h}=\tan ^{-1} \frac{v_{0} \sqrt{2}}{\sqrt{g h}}=\tan ^{-1} \frac{(80 \mathrm{~m} / \mathrm{s}) \sqrt{2}}{\sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(400 \mathrm{~m})}}=61^{\circ}
\end{aligned}
$$

4-4 Projectile Motion

Example

	As the object reaches the target, calculate the velocity in unitvector notation and magnitude angle notation?

Solution $v_{x}=v_{0 x}=80 \mathrm{~m} / \mathrm{s}$	From previous example $t=\sqrt{\frac{2 h}{g}} \quad \begin{array}{ll} v_{0 x}=v_{0}=80 \mathrm{~m} / \mathrm{s} \\ v_{0 y}=0 \end{array}$
$\begin{aligned} & v_{x}-v_{0 x}=80 m / s \\ & v_{y}=v_{0 y}-g t=-g t=-g \sqrt{\frac{2 h}{g}} \end{aligned}$	$\begin{aligned} -\sqrt{2 \mathrm{hg}} & =-\sqrt{2(400 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\ & =-89 \mathrm{~m} / \mathrm{s} \end{aligned}$
Velocity in unit-vector notation	$\overrightarrow{\mathrm{v}}=(80 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(89 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$
Velocity in magnitude-angle n	$\text { on }\left\{\begin{array}{l} v=\sqrt{(80 \mathrm{~m} / \mathrm{s})^{2}+(-89 \mathrm{~m} / \mathrm{s})^{2}}=120 \mathrm{~m} / \mathrm{s} \\ \theta=\tan ^{-1} \frac{-89 \mathrm{~m} / \mathrm{s}}{80 \mathrm{~m} / \mathrm{s}}=-48^{\circ} \end{array}\right.$

4-4 Projectile Motion
 Example

Solution Since the final height is the same as the launch height, we can use $R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}$
$R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}$
$2 \theta_{0}=\sin ^{-1} \frac{\mathrm{Rg}}{\mathrm{v}_{0}^{2}}=\sin ^{-1} \frac{(500 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{}=\sin ^{-1} 0.766=\left\{\begin{array}{c}50^{\circ} \text { calculator }\end{array}\right.$

4-4 Projectile Motion Example

Solution The maximum range corresponds to elevation angle θ_{0} of 45°

$$
R_{\max }=\frac{v_{0}^{2}}{g} \sin 2\left(45^{\circ}\right)=\frac{v_{0}^{2}}{g}=653 \mathrm{~m} \approx 650 \mathrm{~m}
$$

4-4 Projectile Motion
 Example

4-4 Projectile Motion Questions

1. A boy is running on cliff to jump into the sea. The height of the cliff is 20 m . The speed of the boy is $10 \mathrm{~m} / \mathrm{s}$. (Take $\mathrm{g}=-10 \mathrm{~m} / \mathrm{s}^{2}$)
a) Find the time for the boy to touch into the sea.
b) Find the vertical velocity of the boy when he touches on the sea.
c) Find the horizontal distance (X) of the boy when he touches on the sea.

2. A ball is thrown at an angle 30° with the horizontal. If the initial velocity is $20 \mathrm{~m} / \mathrm{s}$,
a) Find its max height (How high will it go?)
b) The distance that it hits the ground (Range)?
c) How long will it take for the arrow to strike the ground? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
3. According to the figure;
a) What is the initial velocity of the projectile?
b) Find the time of flight.
4. Look at the figure. At what height does the projectile hit the wall?

4-5 Uniform Circular Motion

 Circular motionAn object moving around a circular path makes circular motion.

4-5 Uniform Circular Motion

Acceleration and velocity direction

4-5 Uniform Circular Motion

Acceleration and velocity direction

4-5 Uniform Circular Motion

Acceleration and velocity direction

Is the ball accelerating ?

The object then moves along a straight line.

Without tension the object moves in a straight line.

Tension changes the direction of the object.

4-5 Uniform Circular Motion

Centripetal acceleration

4-5 Uniform Circular Motion

Period of revolution

4-5 Uniform Circular Motion

Derivation - Centripetal acceleration

4-5 Uniform Circular Motion

Circular Motion \rightarrow Accelerating Motion

- Object moves along a circular path.
- The direction of velocity is always changing.
- Changing velocity implies that the object accelerates.

4-5 Uniform Circular Motion

Example

What is the centripetal acceleration, in g units, of a particle moving at speed of $v=1000 \mathrm{~km} / \mathrm{h}$ in a circular path of radius $\mathrm{r}=10.0 \mathrm{~km}$?

Solution

$$
\begin{aligned}
a= & \frac{v^{2}}{r}=\frac{(1000 \mathrm{~km} / \mathrm{h})^{2}}{(10.0 \mathrm{~km})}=1.00 \times 10^{5} \frac{\mathrm{~km}}{\mathrm{~h}^{2}} \\
& =\left(1.00 \times 10^{5} \frac{\mathrm{~km}}{\mathrm{~h}^{2}}\right)\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)^{2}=7.72 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& =\left(7.72 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{\mathrm{g}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\right)=0.787 \mathrm{~g}
\end{aligned}
$$

4-5 Uniform Circular Motion
 \section*{Checkpoint}

A particle moves at a constant speed along a circular path in an xy plane, with the center located at the origin.
When the particle at $x=10 \mathrm{~m}$, its velocity is $-(5.0 \mathrm{~m} / \mathrm{s}) \hat{j}$.
What is the particle's velocity and acceleration when it is at $\mathrm{y}=10 \mathrm{~m}$.
Solution

$$
\begin{aligned}
& \vec{v}=(5 \mathrm{~m} / \mathrm{s}) \hat{i} \\
& a=\frac{v^{2}}{r}=\frac{(5 \mathrm{~m} / \mathrm{s})^{2}}{(10 \mathrm{~m})}=2.5 \mathrm{~m} / \mathrm{s}^{2} \\
& \vec{a}=-\left(2.5 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}
\end{aligned}
$$

4-5 Uniform Circular Motion
 Example

4-5 Uniform Circular Motion

Example

4-5 Uniform Circular Motion Questions

1. The blade of a windshield wiper moves through an angle of 90 degrees in 0.28 seconds. The tip of the blade moves on the arc of a circle that has a radius of 0.76 m .
What is the magnitude of the centripetal acceleration of the tip of the blade?
2. An automobile is traveling at a speed of $18 \mathrm{~m} / \mathrm{s}$ in uniform circular motion as it makes a turn. It has a centripetal acceleration whose magnitude is $6 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the radius if the path.
3. A ball rotates at a constant speed of $3 \mathrm{~m} / \mathrm{s}$ on the end of 1.2 m long string. The string describes a horizontal circle.
Calculate the centripetal acceleration of the ball.
4. Look at the figure. The ball is making circular motion on $x-y$ plane. Show the direction of centripetal acceleration and velocity of the object at points A, B, C and D.

