Chapter 3 - Part C Motion Along a Straight Line

3-6 Free-Fall Acceleration

3-6 Free-Fall Acceleration

Free-fall

In the absence of the effects of air, all objects dropped or thrown near Earth's surface have a certain constant acceleration toward Earth. This acceleration is called free-fall acceleration and it is due to Earth's gravity.

$\left.$| positive \uparrow |
| ---: |
| direction |\right|y

Earth's surface

$$
a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

g is the magnitude of the free-fall acceleration. g is always positive. $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

The value of g varies slightly from place to place on Earth's surface. the value $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is accurate enough for our purposes in this course.

3-6 Free-Fall Acceleration

Formulas

Equations for free-fall = Equations for motion with constant acceleration

	$v=v_{0}-g t$	$\begin{array}{lll} x & \rightarrow & y \\ x_{0} & \rightarrow & y_{0} \\ \mathrm{a} & \rightarrow & -g \end{array}$
positive direction	$y-y_{0}=v_{0} t-\frac{1}{2} g t^{2}$	Basic equations
	$v^{2}=v_{0}^{2}-2 \mathrm{~g}\left(\mathrm{y}-\mathrm{y}_{0}\right)$	Useful and can be derived from the two basic equations
	$y-y_{0}=\frac{1}{2}\left(v+v_{0}\right) t$	
$\mathrm{a}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{y}-\mathrm{y}_{0}=\mathrm{vt}+\frac{1}{2} \mathrm{gt}^{2}$	
	$\mathrm{v}_{\text {avg }}=\frac{1}{2}\left(\mathrm{v}+\mathrm{v}_{0}\right)$	

3-6 Free-Fall Acceleration

Example

Solution

Since we know $y-y_{0}$ and v_{0}, we can use the following equation to find t

$$
\begin{array}{cl}
\mathrm{y}-\mathrm{y}_{0}=v_{0} \mathrm{t}-\frac{1}{2} \mathrm{~g} \mathrm{t}^{2} & \begin{array}{l}
\text { Choose the origin of } \\
\text { the y-axis at the cliff. } \\
0
\end{array} \quad \begin{array}{ll}
\text { l }=======================
\end{array} \\
0 & \text { Initially at rest }
\end{array}
$$

$$
y=-\frac{1}{2} g t^{2}
$$

$$
\mathrm{t}^{2}=-\frac{2 \mathrm{y}}{\mathrm{~g}}
$$

$$
t= \pm \sqrt{-\frac{2 y}{g}}= \pm \sqrt{-\frac{2(-300 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}= \pm 7.82 \mathrm{~s}
$$

Since the ball reaches the ground after $t=0$, the negative answer is not valid.

```
t=7.82 s
```


3-6 Free-Fall Acceleration

Example

3-6 Free-Fall Acceleration

Example

Thrown up with
initial velocity
15 m/s.
How long does the ball
take to reach its maximum
height?

Solution

Since we know v and v_{0}, we can use the following equation to find t
$v=v_{0}-g t$

0
At its maximum
height, the ball is at
rest $\rightarrow \mathrm{v}=0$
$0=v_{0}-g t$
$\mathrm{t}=\frac{\mathrm{v}_{0}}{\mathrm{~g}}=\frac{15 \mathrm{~m} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.5 \mathrm{~s}$

3-6 Free-Fall Acceleration

Example

How long does the ball take to reach a point 6.0 m above its release point?

Solution

Since we know $y-y_{0}$ and v_{0}, we can use the following equation to find t

$y=v_{0} t-\frac{1}{2} g t^{2}$

$$
g t^{2}-2 v_{0} t+2 y=0
$$

$$
t=\frac{2 v_{0} \pm \sqrt{4 v_{0}^{2}-8 g y}}{2 g}=\frac{v_{0} \pm \sqrt{v_{0}^{2}-2 g y}}{g}
$$

$$
=\frac{15 \mathrm{~m} / \mathrm{s} \pm \sqrt{(15 \mathrm{~m} / \mathrm{s})^{2}-2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(6 \mathrm{~m})}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}
$$

$$
= \begin{cases}0.47 \mathrm{~s} & \text { The way up } \\ 2.6 \mathrm{~s} & \text { The way down }\end{cases}
$$

3-6 Free-Fall Acceleration

Checkpoint

Solution

Positive

Negative

$$
a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

