Chapter 2 - Part B Vectors

2-6 Multiplying Vectors - Scalar Product 2-7 Multiplying Vectors - Vector Product

2-6 Multiplying Vectors - Scalar Product

Scalar Product

2-6 Multiplying Vectors - Scalar Product

Scalar Product

As the lines become perpendicular the projection gets shorter and becomes zero when the angle is 90°.
$>$ The dot product of two vectors is a scalar.
$>$ It is largest if the two vectors are parallel, and zero if the two vectors are perpendicular.
$>$ One of the common applications of the scalar(dot) product is to find the angle between two vectors.

2-6 Multiplying Vectors - Scalar Product

Scalar Product

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\right) \cdot\left(b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k}\right) \\
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{gathered}
$$

Magnitude of a vector: $a=\sqrt{a^{2}}=\sqrt{\vec{a} \cdot \vec{a}}=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$

2-6 Multiplying Vectors - Scalar Product

Example 1

Vector a has magnitude 4 , vector b has magnitude 6 and the angle between a and b is 90°. Calculate $\vec{a} \bullet \vec{b}$.

Solution

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

$$
\begin{aligned}
& |\vec{a}|=4 \\
& |\vec{b}|=6 \\
& \vec{a} \cdot \vec{b}=a \cdot b \text { cos } 90 \\
& \vec{a} \cdot \vec{b}=4.6 \cdot 0=0
\end{aligned}
$$

2-6 Multiplying Vectors - Scalar Product

Example 2

Look at the graph and calculate the value of $\vec{a} \cdot \vec{b}$.
The values of $a=10$, and $b=13$.

Solution I: $\quad \vec{a} \bullet \vec{b}=a b \cos \phi$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=10 \times 13 \times \cos (59.5)=130 \times(0.505) \\
& \vec{a} \cdot \vec{b}=66
\end{aligned}
$$

Solution II: $\quad a_{x}=-6$
$b_{x}=5$
$a_{y}=8 \quad b_{y}=12$
$\vec{a} \cdot \vec{b}=a_{x} \cdot b_{x}+a_{y} \cdot b_{y}=-6.5+8.12$
$\vec{a} \cdot \vec{b}=66$

2-6 Multiplying Vectors - Scalar Product

Example 3

What is the angle between $\vec{a}=3.0 \hat{i}-4.0 \hat{j}$ and $\vec{b}=-2.0 \hat{i}+3.0 \hat{k}$?
Solution

$\vec{a} \cdot \vec{b}=a b \cos \phi$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=a_{v} b_{x}+a_{v} b_{v}+a_{,} b_{,} \\
& \vec{a} \cdot \vec{b}=(3.0)(-2.0)+(-4.0)(0)+(0)(3.0)=-6.0
\end{aligned}
$$

$\cos \phi=\frac{\vec{a} \cdot \vec{b}}{a b}$
$a=\sqrt{3.0^{2}+(-4.0)^{2}}=5.0$
$b=\sqrt{(-2.0)^{2}+(3.0)^{2}}=3.6$

$$
\phi=\cos ^{-1} \frac{-6.0}{(5.0)(3.6)}=110^{\circ}
$$

2-6 Multiplying Vectors - Scalar Product

Example 4

Look at the graph and calculate the value of $\vec{a} \cdot \vec{b}$.

Solution

$$
\begin{aligned}
& \vec{a}=-2 \hat{\mathbf{i}}+6 \hat{\mathbf{j}} \\
& \vec{b}=5 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \\
& \vec{a} \cdot \vec{b}=a_{x} \cdot b_{x}+a_{y} \cdot b_{y} \\
& \vec{a} \cdot \vec{b}=a_{x} \cdot b_{x}+a_{y} \cdot b_{y}=-2.5+6.3 \\
& \vec{a} \cdot \vec{b}=8
\end{aligned}
$$

2-6 Multiplying Vectors - Scalar Product

Example 5

Use the dot product and calculate the angle θ.

$$
\vec{a} \cdot \vec{b}=a_{x} \cdot b_{x}+a_{y} \cdot b_{y} \quad a_{x}=-3 ; b_{x}=12 ; a_{y}=4 ; b_{y}=5
$$

$$
\vec{a} \cdot \vec{b}=a_{x} \cdot b_{x}+a_{y} \cdot b_{y}=-3.12+4.5=-16
$$

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{a b}=\frac{-16}{65}=-0.18 \quad \theta=104.3^{\circ}
$$

$$
\begin{aligned}
& \text { Solution } \quad \overrightarrow{\mathrm{a}}=-3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}} \quad \mathrm{IaI}=\sqrt{(3)^{2}+(4)^{2}}=5 \\
& \vec{b}=12 \hat{\mathbf{i}}+5 \hat{\mathbf{j}} \quad \mathbf{I b I}=\sqrt{(12)^{2}+(5)^{2}}=13 \\
& \text { Ial. } \mathbf{l b l}=5.13=65
\end{aligned}
$$

2-6 Multiplying Vectors - Scalar Product
 Example 6

Two vectors are given as: $\mathbf{a}=-3.0 \mathrm{i}+5.0 \mathrm{j}+4.0 \mathrm{k}$ and
$\mathbf{b}=4.0 \mathrm{i}+5.0 \mathrm{j}+3.0 \mathrm{k}$, where i, j and k are the unit vectors in the positive x, y and z directions. Find the angle between the vectors A and B.

$$
\begin{array}{ll}
\text { Solution } \quad \begin{array}{c}
\mathbf{a}=-3.0 \mathrm{i}+5.0 \mathrm{j}+4.0 \mathrm{k}
\end{array} & \mathbf{b}=4.0 \mathrm{i}+5.0 \mathrm{j}+3.0 \mathrm{k} \\
\text { IaI }=\sqrt{(-3)^{2}+(5)^{2}+(4)^{2}}=7.1 & \text { IbI }=\sqrt{(4)^{2}+(5)^{2}+(3)^{2}}=7.1 \\
\text { IaI . IbI }=7.1 \times 7.1=50.4 &
\end{array}
$$

$$
a_{x}=-3 ; b_{x}=5 ; a_{y}=5 ; b_{y}=5 ; a_{z}=4 ; b_{z}=3
$$

$$
\vec{a} \cdot \vec{b}=a_{x} \cdot b_{x}+a_{y} \cdot b_{y}+a_{z} \cdot b_{z}
$$

$$
\vec{a} \cdot \vec{b}=-3.5+5.5+4.3=22
$$

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{a \operatorname{b}}=\frac{22}{50.4}=0.44
$$

$$
\theta=64^{\circ}
$$

2-6 Multiplying Vectors - Scalar Product Example 7

Two vectors \mathbf{a} and \mathbf{b} have magnitudes of 10 m and 15 m respectively. The angle between them is 65°. Find the component (projection) of \mathbf{b} along \mathbf{a}.

Solution

$$
\begin{aligned}
& a=10 \mathrm{~m} \text { and } \mathrm{b}=15 \\
& \phi=65^{\circ}
\end{aligned}
$$

The projection of b along is $b \cos \phi$.
Find $b \cos \phi$.
$b \cdot \cos \phi=15 . \cos 65=6.3 m$

The projection of b along is $b \cos \phi$.

2-6 Multiplying Vectors - Scalar Product Why are solar panels usually mounted on an angle?

Solar Panel alignment and Scalar multiplication

To get optimum benefit from sunlight, the solar panel should face the sun properly such that the maximum amount of sunlight will hit the panel surface. Alignment of the panel effects the amount of sun light it receives and the electricity it produces. Depending on the position of the sun, tilt angle of the panel should be changed to increase the efficiency.

2-6 Multiplying Vectors - Scalar Product Why are solar panels usually mounted on an angle?

The solar panel has a surface, the tilt angle of the panel changes the normal vector of the panel surface. The angle between the sunlight and the normal vector of the surface effects the amount of solar energy captured. The normal vector, often simply called the "normal," to a surface is a vector which is perpendicular to the surface at a given point.

Solar panel is more efficient when properly facing the sun such that the sun light hits on the panel surface vertically. The effect of the sun light is calculated by $\cos 180^{\circ}=-1$).

$$
\vec{a} \cdot \vec{b}=-a b
$$

Solar panel is less efficient when it is not properly facing the sun such that the sun light hits on the panel with an angle. The effect of the sun light is calculated by $\cos \phi$.

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

If the sun light is parallel to the solar panel, there will be no efficiency of the panel. The effect of the sun light is calculated by $\cos 90^{\circ}=0$)

$$
\vec{a} \cdot \vec{b}=0
$$

2-6 Multiplying Vectors - Scalar Product

 Example 8Two vectors have magnitudes of 5 m and 3 m respectively. What is the angle between them if their dot product is

(a) zero	$\phi=90^{\circ}$
(b) $15 \mathrm{~m}^{2}$	$\phi=0^{\circ}$
(c) $-15 \mathrm{~m}^{2}$	$\phi=180^{\circ}$

$\vec{a} \cdot \vec{b}=a b \cos \phi$

2-6 Multiplying Vectors - Scalar Product

Example 9

Using dot product equation prove the law of cosine using the vectors for the triangle beside.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

$\mathrm{c}=\mathbf{a}-\mathbf{b}$

Solution

$$
\begin{aligned}
\mathrm{c} \cdot \mathrm{c} & =(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
& =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b} \\
& =a^{2}-\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{b}+b^{2} \\
& =a^{2}-2 \mathbf{a} \cdot \mathbf{b}+b^{2} \\
c^{2} & =a^{2}+b^{2}-2 a b \cos \theta
\end{aligned}
$$

2-7 Multiplying Vectors - Vector Product Vector Product or Cross Product

The direction of \vec{c} is perpendicular to the plane that contains \vec{a} and \vec{b} If \vec{a} and \vec{b} are in the plane of the paper, \vec{c} will be perpendicular to the paper.
Right-hand rule $\quad \vec{C}$

2-7 Multiplying Vectors - Vector Product

Example 10

Let the magnitude of vector \mathbf{a} is 2 and \mathbf{b} is 5 , and the angle between them is 30°. Find $\mathbf{a} \times \mathbf{b}$.

Solution

$$
\begin{aligned}
& a=2 \text { and } b=5 . \\
& \vec{a} \times \vec{b}=a b \sin \phi \\
& \vec{a} \times \vec{b}=2 \cdot 5 \sin 30^{\circ} \\
& \vec{a} \times \vec{b}=10 \cdot(0.5)=5 \widehat{k}
\end{aligned}
$$

2-7 Multiplying Vectors - Vector Product Vector Product

2-7 Multiplying Vectors - Vector Product

 Vector Product

2-7 Multiplying Vectors - Vector Product Vector Product in unit-vector notation

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\right) \times\left(b_{x} \hat{i}+b_{y} \hat{j}+b_{z} \hat{k}\right) \\
& \vec{a} \times \vec{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \hat{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{k}
\end{aligned}
$$

$$
\begin{array}{l:l}
\hat{i} \times \hat{i}=0 & \hat{i} \times \hat{j}=\hat{k} \\
\hat{j} \times \hat{j}=0 & \hat{j} \times \hat{k}=\hat{i} \\
\hat{k} \times \hat{k}=0 & \hat{k} \times \hat{i}=\hat{j}
\end{array}
$$

Dot product: your result is a number. For dot product use cosine. Dot \rightarrow CO

Cross product: your result is a vector.
For cross product use sine. CrosS \rightarrow Sine

2-7 Multiplying Vectors - Vector Product

Example 11

$$
\text { What is } \vec{c}=\vec{a} \times \vec{b} \text { if } \vec{a}=3 \hat{i}-4 \hat{j} \text { and } \vec{b}=-2 \hat{i}+3 \hat{k} \text { ? }
$$

Solution

$$
\begin{aligned}
& \vec{c}=\vec{a} \times \vec{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \hat{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{k} \\
& \vec{c}=((-4)(3)-(0)(0)) \hat{i}+((0)(-2)-(3)(3)) \hat{j}+((3)(0)-(-4)(-2)) \hat{k} \\
& \vec{c}=-12 \hat{i}-9 \hat{j}-8 \hat{k}
\end{aligned}
$$

Note that \vec{c} is perpendicular to both \vec{a} and \vec{b}.
We check that by showing $\vec{c} \cdot \vec{a}=0$ and $\vec{c} \cdot \vec{b}=0$.

$$
\begin{aligned}
& \vec{c} \cdot \vec{a}=c_{x} a_{x}+c_{y} a_{y}+c_{z} a_{z} \\
& \vec{c} \cdot \vec{a}=(-12)(3)+(-9)(-4)+(-8)(0)=0 \\
& \vec{c} \cdot \vec{b}=c_{x} b_{x}+c_{y} b_{y}+c_{z} b_{z} \\
& \vec{c} \cdot \vec{b}=(-12)(-2)+(0)(-4)+(-8)(3)=0
\end{aligned}
$$

2-7 Multiplying Vectors - Vector Product

Example 12

Let $\mathbf{a}=\mathbf{- 2 i} \mathbf{+} \mathbf{3 k}$ and $\mathbf{b}=\mathbf{2 j} \mathbf{+} \mathbf{k}$. Find $\mathbf{a} \times \mathbf{b}$.

Solution

$$
a_{x}=2 ; a_{y}=0 ; a_{z}=3 ; b_{x}=0 ; b_{y}=2 ; b_{z}=1
$$

$$
\vec{c}=\vec{a} \times \vec{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \hat{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \hat{j}+\left(a_{x} b_{y}-a_{y} b_{x} \hat{k}\right.
$$

$$
\mathbf{c}=(0.1-3.2) \mathbf{i}+(3.0-2.1) \mathbf{j}+(2.2-0.0) \mathbf{k}
$$

$$
\mathbf{c}=-6 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}
$$

