Carbohydrates

Tishk International University, Education Faculty, Biology Dept, Biochemistry, 1st Semester

Carbohydrates

- Carbohydrates are the main source of energy for the living cells.
- Glucose is the central molecule in carbohydrate metabolism, actively participating in a number of metabolic pathway.
- The word 'carbohydrate' is derived from the Greek word '**sakcharon**' meaning '**sugar**'.
- Their general formula is (C.H₂O)_n

Biological Significance/functions of carbohydrates

1) source of energy; carbohydrates are the primary source of energy. They are the food reserve (energy store molecules) in microbes, animals and plants.

2) Structural framework of genetic material: The sugars **ribose and deoxyribose** are a part of the structural framework of genetic material **RNA and DNA**.

3) Structural element of cell wall: Polysaccharides are the structural elements of the cell wall of bacteria and plants.

• **Cellulose**, a polysaccharide and a principal component of the cell wall of pants, is one of the most abundant organic compounds in the biosphere.

4) Conjugate with lipids and proteins: Carbohydrates are extensively linked protein and lipid molecules. These glycoprotein and glycolipids are critical in choreographing interactions between cells and other biological elements.

• For carbohydrates, the functional group is the carbonyl group which may be either

```
Aldehyde Group (H-C=O)
Or
Keto Group (C=O)
```


Monosaccharides

- (*mono*-= "one"; *sacchar*-= "sweet") are simple sugars, the most common of which is glucose.
- In monosaccharides, the number of carbons usually ranges from three to seven.
- Monosaccharides are further classified into two subgroups depending upon the;
 - 1) Number of carbon atoms present
 - 2) Chemical nature of their carbonyl group or presence of aldehyde or ketone unit

1) Number of carbon atoms present:

- the smallest monosaccharide is the one with three carbon atoms, known as **trioses**.
- Therefore, the monosaccharide with four, five, six or seven carbon atoms are called **tetroses**, **pentoses**, **hexoses** and **heptoses**.

2) Chemical nature of their carbonyl group or presence of aldehyde or ketone unit:

- if the carbonyl group is **aldehyde** in nature, the monosaccharide is called **aldose**.
- If the carbonyl group is **ketone**, then the monosaccharide is called **ketose**.

Monosaccharide

Cannot further Hydrolyzed

No. of Carbon	Type of sugar	Aldoses	Ketoses
3	TRIOSES	Glyceraldehydes	Dihydroxyacetone
4	TETROSES	Erythrose	Erythrulose
5	PENTOSES	Ribose, Xylose	Ribulose, xylulose
6	HEXOSES	Glucose, Galactose	Fructose
7	HEPTOSES	Glucoheptose	Sedoheptulose

TYPES	EXAMPLE	IMPORTANCE	
Trioses	Glyceraldehyde, Dihydroxyacetone	 ✓ Intermediates of glycolysis, ✓ Precursor of glycerol (for lipid synth) 	
Tetroses	D-Erythrose	✓ Intermediates of carbohydrate metabolism	
Pentoses	D-Ribose	✓ Structural element of nucleic acid, RNA, co-enzymes.	
Hexoses	D-Glucose	✓ Main sugar of the body.	
	D-Fructose	✓ Converted to glucose & utilized by the body.	
	D-Galactose	✓ Synthesized in mammary gland to make the lactose of milk.	
	D-Mannose	✓ Constituent of glycoprotein, glycolipid	

- The chemical formula for glucose is $C_6H_{12}O_6$.
- In humans, glucose is an important source of energy.
- During cellular respiration, energy is released from glucose, and that energy is used to help make adenosine triphosphate (ATP).
- Plants synthesize glucose using carbon dioxide and water, and glucose in turn is used for energy requirements for the plant.

- Galactose and fructose are other common monosaccharides galactose is found in milk sugars
- fructose is found in fruit sugars.
- Although **glucose, galactose, and fructose** all have the same chemical formula (C₆H₁₂O₆),
- they differ structurally and chemically (and are known as isomers) because of the different arrangement of functional groups around the asymmetric carbon.

Disaccharides

- Disaccharides (di— = "two") form when two monosaccharides undergo a dehydration reaction (also known as a condensation reaction or dehydration synthesis).
- During this process, the hydroxyl group of one monosaccharide combines with the hydrogen of another monosaccharide, releasing a molecule of water and forming a covalent bond.
- A covalent bond formed between a carbohydrate molecule and another molecule (in this case, between two monosaccharides) is known as a **glycosidic bond.**

Disaccharides

- Three common disaccharides:
- sucrose common table sugar = glucose + fructose
- **lactose** major sugar in milk = glucose + galactose
- maltose product of starch digestion = glucose + glucose

Oligosaccharides

- An **oligosaccharide** is a **saccharide polymer** containing a small number (typically three to ten) of **monosaccharides** (simple sugars).
- Oligosaccharides can have many functions including cell recognition and cell binding. For example, glycolipids have an important role in the immune response.
- Not all natural oligosaccharides occur as components of glycoproteins or glycolipids.
- Some, such as the raffinose series, occur as storage or transport carbohydrates in plants.

Polysaccharides

- A long chain of monosaccharides linked by glycosidic bonds is known as a polysaccharide (poly- = "many").
- The chain may be branched or unbranched, and it may contain different types of monosaccharides.
- Starch, glycogen, cellulose, and chitin are primary examples of polysaccharides.
- Starch is the stored form of sugars in plants and is made up of a mixture of amylose and amylopectin (both polymers of glucose).
- Plants are able to synthesize glucose, and the excess glucose, beyond the plant's immediate energy needs, is stored as starch in different plant parts, including roots and seeds.

- **Glycogen** is the storage form of glucose in humans and other vertebrates and is made up of monomers of glucose.
- Glycogen is the animal equivalent of starch and is a highly branched molecule usually stored in liver and muscle cells.

- Cellulose is the most abundant natural biopolymer. Cellulose is the main substance found in plant cell walls and helps the plant to remain stiff and strong.
- Humans cannot digest cellulose, but it is used to make clothes and paper.
- Chitin is also a major component of fungal cell walls; fungi are neither animals nor plants and form a kingdom of their own in the domain Eukarya.